Research Outcomes
Browse publications from researchers in our institutes and offices.
Browse scientific journal articles, technical reports, standards, guidance documents, and additional publications and tools across CIRI’s research initiatives on chemicalinsights.org.
To see the outcomes of DSRI and how their work positively impacts the digital ecosystem, visit dsri.org.
Featured Research
ECS Focus Issue
To encourage collaboration and share research insights and knowledge with a wide audience, ESRI collaborated with The Electrochemical Society to publish a focus issue titled, Journey of Lithium-Ion: Performance, Safety, and Lifespan, under its flagship journal, Journal of The Electrochemical Society. The focus issue – a collection of journal papers by researchers, scientists, and subject matter experts from the electrochemical field – showcases facts and safety parameters of lithium-ion battery chemistry, including thermal runaway and fast-charging, and the wide and varied nature of components such as cathodes, anodes, and electrolytes available today.
Lithium-ion battery chemistry was first found to be promising in the 1950s but became a viable commercial option in the 1990s. Three decades later, this chemistry is still being optimized with discoveries in cathode and anode materials, electrolytes, and separator technologies, as well as with design engineering that helps with making cells provide higher energy and power densities.
In recent years, renewable energy technologies have emerged as one of the highest priority solutions to climate change. However, safety issues involving lithium-ion batteries have focused research into improving the stability and performance of battery materials and its components.
All these topics and more are covered in the focus issue’s articles and many of them are open to all readers.
Full ESRI bibliography
Aashutosh, M., Ankit, V., Shashank, S., Rebecca, C., Valentin, S., Ferran Brosa, P., Robert, T., Yumin, Z., Rachel, K., Philipp, D., Weihan, L., Samuel, G., Zeeshan, A., Dilip, K., Alexis, M. F., Kevin, T., Prehit, P., Daniel Juarez, R., Paul, G.,…Venkatasubramanian, V. (2021). A Minimal Information Set To Enable Verifiable Theoretical Battery Research. ACS Energy Letters, 6(11), 3831-3835. https://doi.org/10.1021/acsenergylett.1c01710
Alex, B., Loraine, T.-C., Paul, A., Partha, P. M., Judith, J., Nathan, J., Bhuvsmita, B., Zixuan, W., Taiwo, O., Bairav, S. V., Avijit, K., & Wan Si, T. (2024). A Multi-scale Framework for Advancing Battery Safety Through Early Calorimetric Analysis of Materials and Components. The Electrochemical Society Interface, 33(3), 69-76. https://doi.org/10.1149/2.f10243if
Avijit, K., Hanwei, Z., Bairav, S. V., Judith, A. J., & Partha, P. M. (2024). State-of-Charge Implications of Thermal Runaway in Li-ion Cells and Modules. Journal of the Electrochemical Society, 171(1), 010529. https://doi.org/10.1149/1945-7111/ad1ecc
Bor Yann, L., FuQing, W., YiMin, W., Klaus, B., Jörg, S., Markus, S.-B., Sonia, D., Thomas, W., Peter, L., Jeevarajan, J. A., Hilmi, B., & Karl-Heinz, P. (2019). Managing Safety Risk by Manufacturers. In Electrochemical Power Sources: Fundamentals, Systems, and Applications (pp. 267-378). https://doi.org/10.1016/b978-0-444-63777-2.00008-6
Byoungchul, K., Alexandra, S., & Judith, A. J. (2024). Evaluating Fire and Smoke Risks with Lithium-Ion Cells, Modules, and Batteries. ACS Energy Letters, 5319-5328. https://doi.org/10.1021/acsenergylett.4c02480
Carlos, F. L., Judith, A. J., & Partha, P. M. (2016). Evaluation of Combined Active and Passive Thermal Management Strategies for Lithium-Ion Batteries. Journal of Electrochemical Energy Conversion and Storage, 13(3), 031007. https://doi.org/10.1115/1.4035245
Conner, F., Daniel, J.-R., Judith, A. J., & Partha, P. M. (2018). Elucidating Copper Dissolution Phenomenon in Li-Ion Cells under Overdischarge Extremes. Journal of the Electrochemical Society, 165(9), a1639-a1647. https://doi.org/10.1149/2.0671809jes
Daniel, J.-R., Anjul Arun, V., Conner, F., Judith, A. J., & Partha, P. M. (2020). Overcharge and Aging Analytics of Li-Ion Cells. Journal of the Electrochemical Society, 167(9), 090547. https://doi.org/10.1149/1945-7111/ab9569
Daniel, J.-R., Anjul Arun, V., Conner, F., Judith, A. J., & Partha, P. M. (2020). Overdischarge and Aging Analytics of Li-Ion Cells. Journal of the Electrochemical Society, 167(9), 090558. https://doi.org/10.1149/1945-7111/aba00a
Daniel, J.-R., Judith, A. J., & Partha, P. M. (2020). Degradation-Safety Analytics in Lithium-Ion Cells: Part I. Aging under Charge/Discharge Cycling. Journal of the Electrochemical Society, 167(16), 160510. https://doi.org/10.1149/1945-7111/abc8c0
Daniel, J.-R., Saad, A., Judith, A. J., & Partha, P. M. (2021). Degradation-Safety Analytics in Lithium-Ion Cells and Modules Part II. Overcharge and External Short Circuit Scenarios. Journal of the Electrochemical Society, 168(5), 050535. https://doi.org/10.1149/1945-7111/ac001f
Daniel, J.-R., Saad, A., Judith, A. J., & Partha, P. M. (2021). Degradation-Safety Analytics in Lithium-Ion Cells and Modules: Part III. Aging and Safety of Pouch Format Cells. Journal of the Electrochemical Society, 168(11), 110501. https://doi.org/10.1149/1945-7111/ac30af
Deepti, T., Dhevathi Rajan Rajagopalan Rajagopalan, K., & Judith, J. (2024). Coupled Electrical – Thermal – Electrochemical Model of a Battery Module. Electrochemical Society Meeting Abstracts, MA2024-01(2), 477-477. https://doi.org/10.1149/ma2024-012477mtgabs
Dylan, P., Mohammad, P., Ankur, J., Gozdem, K., & Jason, O. (2023). Physics Based Electrolyte Evaporation Model for Use in Li-Ion Thermal Runaway Simulations. Volume 7: Energy,
Erik, A., Robert, K., Kevin, M., Judith, J., & Ofodike, E. (2020). Characterization of Thermally Induced Runaway in Pouch Cells for Propagation. Fire Technology, 56(6), 2467-2490. https://doi.org/10.1007/s10694-020-00974-2
Hanwei, Z., Anuththara, S. A., Maria, T., Conner, F., Tapesh, J., Vallabha Rao, R., Judith, A. J., & Partha, P. M. (2024). Effect of fast charging on degradation and safety characteristics of lithium-ion batteries with LiNi x Co y Mn z Al1- x – y – z O2 cathodes. Chemical Engineering Journal, 492, 152181. https://doi.org/10.1016/j.cej.2024.152181
Hanwei, Z., Anuththara, S. A., Maria, T., Conner, F., Tapesh, J., Vallabha Rao, R., Judith, A. J., & Partha, P. M. (2025). Effect of fast charging on degradation and safety characteristics of lithium-ion batteries with LiFePO4 cathodes. Applied Energy, 377, 124465. https://doi.org/10.1016/j.apenergy.2024.124465
Hanwei, Z., Conner, F., Judith, A. J., & Partha, P. M. (2023). State-of-electrode (SOE) analytics of lithium-ion cells under overdischarge extremes. Energy Storage Materials, 54, 60-74. https://doi.org/10.1016/j.ensm.2022.10.024
J., J. (2018, 26 – 29 March 2018). A comprehensive study on the safety of aged lithium-ion cells and modules. 35th Annual International Battery Seminar and Exhibit 2018, Fort Lauderdale, Florida, USA.
Jason, K. O., Mohammad, P., Weisi, L., Gozdem, K., & Crompton, K. R. (2023). CFD-Based Thermal Abuse Simulations including Gas Generation and Venting of an 18650 Li-Ion Battery Cell. Journal of the Electrochemical Society, 170(9), 090512. https://doi.org/10.1149/1945-7111/acf4c1
Jason, K. O., Nicholas, R. B., Mohammad, P., & Judith, A. J. (2024). Hot gas impingement and radiation on neighboring surfaces from venting and combustion in a package of 18650 cells. Journal of Power Sources Advances, 28, 100150. https://doi.org/10.1016/j.powera.2024.100150
Jason, O., Mohammad, P., & Judith, J. (2023). A novel method for alleviating numerical stiffness in Li-ion thermal abuse models. Journal of Power Sources Advances, 23, 100123. https://doi.org/10.1016/j.powera.2023.100123
Jebakumar, D. S. I., & Vallabha Rao, R. (2024). Eco‐friendly Visible Wavelength Photodetectors Based on Colloidal Molybdenum Trioxide Nanobelt Arrays. ChemPhotoChem. https://doi.org/10.1002/cptc.202400038
Jeevarajan, J. (2016). Safe lithium-ion battery designs for use, transportation and second use. 33rd Annual International Battery Seminar and Exhibit: Advanced Battery Technologies for Consumer, Automotive and Military Applications,
Jordan, S. M., Schreiber, C. O., Parhizi, M., & Shah, K. (2024). A new multiphysics modeling framework to simulate coupled electrochemical-thermal-electrical phenomena in Li-ion battery packs. Applied Energy, 360, 122746. https://doi.org/10.1016/j.apenergy.2024.122746
Joshua, L., & Judith, A. J. (2021). New developments in battery safety for large-scale systems. Mrs Bulletin, 46(5), 395-401. https://doi.org/10.1557/s43577-021-00098-0
Judith, A. J., Tapesh, J., Mohammad, P., Taina, R., & Daniel, J.-R. (2022). Battery Hazards for Large Energy Storage Systems. ACS Energy Letters, 7(8), 2725-2733. https://doi.org/10.1021/acsenergylett.2c01400
Judith, J., Carlos, L., Saad, A., & Steven, K. (2019). Thermal Runaway Propagation Testing Study for Safe Transportation of Lithium-ion Cells and Batteries. AIAA Propulsion and Energy 2019 Forum,
Long, Z., Mohammad, P., & Ankur, J. (2023). Analysis of Multilayer Cylindrical Thermal Conduction With a Time-Varying Convective Boundary Condition. ASME Journal of Heat and Mass Transfer, 146(3). https://doi.org/10.1115/1.4063961
Matthew, S., John Jacob, D., Peter, H., Julia, B., Martin, P., David, P., Thomas, M. M. H., Rhodri, J., Rhodri, O., Drasti, P., Du, W., Harry, M., Alexander, R., Oxana, V. M., Thomas, C., Dan, J. L. B., Gareth, H., Matt, K., Eric, D.,…Donal, P. F. (2022). Thermal Runaway of Li-Ion Cells: How Internal Dynamics, Mass Ejection, and Heat Vary with Cell Geometry and Abuse Type. Journal of the Electrochemical Society, 169(2), 020526. https://doi.org/10.1149/1945-7111/ac4fef
Mohammad, P., Long, Z., & Ankur, J. (2022). Theoretical modeling of solid-liquid phase change in a phase change material protected by a multilayer Cartesian wall. International Journal of Heat and Mass Transfer, 197, 123330. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123330
Omidreza, A., Deepti, T., Judith, J., & Damoon, S. (2024). Real-Time Internal Short Circuit Detection in Li-ion Battery Modules During Field Use. 2024 American Control Conference (ACC),
Raghav Sai, T., Anthony, C., Deepti, T., Judith, J., & Venkat, R. S. (2024). A Thermal Tanks-in-Series Model for Simulating over-Discharge Cycling in Lithium-Ion Batteries. Electrochemical Society Meeting Abstracts, MA2024-01(2), 248-248. https://doi.org/10.1149/ma2024-012248mtgabs
Rengaswamy, S., Plamen, A. D., Bliss, G. C., Shriram, S., Judith, A. J., & Thomas, P. B. (2020). Review—Thermal Safety Management in Li-Ion Batteries: Current Issues and Perspectives. Journal of the Electrochemical Society, 167(14), 140516. https://doi.org/10.1149/1945-7111/abc0a5
Susmita, S., Avijit, K., Bairav, S. V., Judith, A. J., & Partha, P. M. (2024). Electrode–electrolyte interactions dictate thermal stability of sodium-ion batteries. Chemical Communications, 60(88), 12868-12871. https://doi.org/10.1039/d4cc03889d
Tapesh, J., Saad, A., Carlos, L., Steven, K., & Judith, J. (2020). Safety of Lithium-Ion Cells and Batteries at Different States-of-Charge. Journal of the Electrochemical Society, 167(14), 140547. https://doi.org/10.1149/1945-7111/abc8c4
Tapesh, J., Saad, A., Daniel, J.-R., & Judith, A. J. (2023). Safety and Quality Issues of Counterfeit Lithium-Ion Cells. ACS Energy Letters, 8(6), 2831-2839. https://doi.org/10.1021/acsenergylett.3c00724
Vinay, P., Mohammad, P., Nicholas, N., Ian, S., & Judith, J. (2024). Characterization of Particulate Emissions From Thermal Runaway of Lithium-Ion Cells. Journal of Electrochemical Energy Conversion and Storage, 22(3). https://doi.org/10.1115/1.4065938
Yuliya, P., Loraine, T.-C., Taina, R., & Judith, J. (2022). Perspective—On the Safety of Aged Lithium-Ion Batteries. Journal of the Electrochemical Society, 169(3), 030507. https://doi.org/10.1149/1945-7111/ac53cc
The FSRI resource library on FSRI.org provides direct access to all outputs related to FSRI research projects and signature programs to address multiple stakeholder needs.
Gilbert, A. (2023). Fire! Science Scope, 46(4). https://doi.org/10.1080/08872376.2023.12290909
Rowan-White, B., & Williams, J. (2024). Research-Based Community Risk Reduction at the Company Level. Fire Engineering, 177(3), 94-96. https://www.fireengineering.com/fire-prevention-protection/research-based-community-risk-reduction-at-the-company-level/